3.1.64 \(\int x \sqrt {d-c^2 d x^2} (a+b \text {ArcSin}(c x)) \, dx\) [64]

Optimal. Leaf size=110 \[ \frac {b x \sqrt {d-c^2 d x^2}}{3 c \sqrt {1-c^2 x^2}}-\frac {b c x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {ArcSin}(c x))}{3 c^2 d} \]

[Out]

-1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))/c^2/d+1/3*b*x*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-1/9*b*c*x^
3*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {4767} \begin {gather*} -\frac {\left (d-c^2 d x^2\right )^{3/2} (a+b \text {ArcSin}(c x))}{3 c^2 d}+\frac {b x \sqrt {d-c^2 d x^2}}{3 c \sqrt {1-c^2 x^2}}-\frac {b c x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(b*x*Sqrt[d - c^2*d*x^2])/(3*c*Sqrt[1 - c^2*x^2]) - (b*c*x^3*Sqrt[d - c^2*d*x^2])/(9*Sqrt[1 - c^2*x^2]) - ((d
- c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/(3*c^2*d)

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^2 d}+\frac {\left (b \sqrt {d-c^2 d x^2}\right ) \int \left (1-c^2 x^2\right ) \, dx}{3 c \sqrt {1-c^2 x^2}}\\ &=\frac {b x \sqrt {d-c^2 d x^2}}{3 c \sqrt {1-c^2 x^2}}-\frac {b c x^3 \sqrt {d-c^2 d x^2}}{9 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 70, normalized size = 0.64 \begin {gather*} \frac {\sqrt {d-c^2 d x^2} \left (\frac {b c \left (x-\frac {c^2 x^3}{3}\right )}{\sqrt {1-c^2 x^2}}+\left (-1+c^2 x^2\right ) (a+b \text {ArcSin}(c x))\right )}{3 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*((b*c*(x - (c^2*x^3)/3))/Sqrt[1 - c^2*x^2] + (-1 + c^2*x^2)*(a + b*ArcSin[c*x])))/(3*c^2)

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.13, size = 343, normalized size = 3.12

method result size
default \(-\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{3 c^{2} d}+b \left (\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 c^{4} x^{4}-5 c^{2} x^{2}-4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+3 i \sqrt {-c^{2} x^{2}+1}\, x c +1\right ) \left (i+3 \arcsin \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (\arcsin \left (c x \right )+i\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right )}{8 c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+4 c^{4} x^{4}-3 i \sqrt {-c^{2} x^{2}+1}\, x c -5 c^{2} x^{2}+1\right ) \left (-i+3 \arcsin \left (c x \right )\right )}{72 c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(343\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)

[Out]

-1/3*a/c^2/d*(-c^2*d*x^2+d)^(3/2)+b*(1/72*(-d*(c^2*x^2-1))^(1/2)*(4*c^4*x^4-5*c^2*x^2-4*I*(-c^2*x^2+1)^(1/2)*x
^3*c^3+3*I*(-c^2*x^2+1)^(1/2)*x*c+1)*(I+3*arcsin(c*x))/c^2/(c^2*x^2-1)-1/8*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(
-c^2*x^2+1)^(1/2)*x*c-1)*(arcsin(c*x)+I)/c^2/(c^2*x^2-1)-1/8*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+
c^2*x^2-1)*(arcsin(c*x)-I)/c^2/(c^2*x^2-1)+1/72*(-d*(c^2*x^2-1))^(1/2)*(4*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+4*c^4*x
^4-3*I*(-c^2*x^2+1)^(1/2)*x*c-5*c^2*x^2+1)*(-I+3*arcsin(c*x))/c^2/(c^2*x^2-1))

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 75, normalized size = 0.68 \begin {gather*} -\frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} b \arcsin \left (c x\right )}{3 \, c^{2} d} - \frac {{\left (c^{2} d^{\frac {3}{2}} x^{3} - 3 \, d^{\frac {3}{2}} x\right )} b}{9 \, c d} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} a}{3 \, c^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

-1/3*(-c^2*d*x^2 + d)^(3/2)*b*arcsin(c*x)/(c^2*d) - 1/9*(c^2*d^(3/2)*x^3 - 3*d^(3/2)*x)*b/(c*d) - 1/3*(-c^2*d*
x^2 + d)^(3/2)*a/(c^2*d)

________________________________________________________________________________________

Fricas [A]
time = 2.83, size = 116, normalized size = 1.05 \begin {gather*} \frac {{\left (b c^{3} x^{3} - 3 \, b c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} + 3 \, {\left (a c^{4} x^{4} - 2 \, a c^{2} x^{2} + {\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \arcsin \left (c x\right ) + a\right )} \sqrt {-c^{2} d x^{2} + d}}{9 \, {\left (c^{4} x^{2} - c^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

1/9*((b*c^3*x^3 - 3*b*c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1) + 3*(a*c^4*x^4 - 2*a*c^2*x^2 + (b*c^4*x^4 -
 2*b*c^2*x^2 + b)*arcsin(c*x) + a)*sqrt(-c^2*d*x^2 + d))/(c^4*x^2 - c^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x)),x)

[Out]

Integral(x*sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int(x*(a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________